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Abstract

The constant rank constraint qualification, introduced by Janin in 1984 for nonlinear programming, has been ex-
tensively used for sensitivity analysis, global convergence of first- and second-order algorithms, and for computing the
derivative of the value function. In this paper we discuss naive extensions of constant rank-type constraint qualifications
to second-order cone programming and semidefinite programming, which are based on the Approximate-Karush-Kuhn-
Tucker necessary optimality condition and on the application of the reduction approach. Our definitions are strictly
weaker than Robinson’s constraint qualification, and an application to the global convergence of an augmented La-
grangian algorithm is obtained.

Keywords: Constraint qualifications; Optimality conditions; Second-order cone programming; Semidefinite program-
ming; Global convergence.

1 Introduction
In this paper we investigate constraint qualifications (CQs) for second-order cone programming and semidefinite pro-
gramming. In particular, we are interested in constant rank CQs as defined first in [15] and later extended in [8, 7, 18, 20]
in the context of nonlinear programming. In particular, the definition in [15] gained some notoriety for its ability to
compute the derivative of the value function, a result known to hold at the time only under Mangasarian-Fromovitz
CQ [23]. Also, the definition from [15] includes naturally the case of linear constraints, which does not follow under
Mangasarian-Fromovitz CQ. The ability to handle redundant constraints (in particular, linear ones) in the case of non-
linear programming is a powerful modeling tool that frees the model builder from the apprehension of including them
without preprocessing. Actually, the effort of finding which constraints are redundant may be equivalent to the effort of
solving the problem.

For conic programming, it is well known that linearity of the constraints is not a CQ [2, 21] and this somehow stresses
the difficulties in extending these ideas to the conic context. In particular, a previous tentative extension to second-order
cones [27] has been shown to be incorrect [3].

In this paper, we make use of the reduction approach in order to propose new constant rank-type CQs for second-
order cone programming and semidefinite programming that are strictly weaker than Robinson’s CQ. In our approach,
we separate the constraints into two sets: one consisting of the constraints that can be completely characterized by
standard equality and inequality nonlinear programming constraints, and other with the irreducible conic constraints.
For second-order cone programming, the second block consists of constraints that are active at the vertex of a multi-
dimensional second-order cone, while for semidefinite programming these correspond to semidefinite blocks where the
zero eigenvalue is non-simple.

We consider our conditions to be naive extensions of the corresponding nonlinear programming CQ in the sense that
if the problem only has irreducible constraints then all our conditions coincide with Robinson’s CQ; however we show
some interesting examples where our condition holds while Robinson’s CQ fails. Extending these ideas to consider also
the irreducible constraints is an ongoing topic of research.

*Department of Applied Mathematics, University of Campinas, Campinas-SP, Brazil. Email: andreani@ime.unicamp.br
†Department of Applied Mathematics, University of São Paulo, São Paulo-SP, Brazil. Email: {ghaeser,leokoto,thiagops}@ime.usp.br
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Despite our inability of dealing with the irreducible conic constraints, the Approximate-Karush-Kuhn-Tucker (AKKT)
[5] necessary optimality condition, recently extended to second-order cones [4] and semidefinite programming [9], can
easily be used to handle the remaining constraints by means of the reduction approach. This allows obtaining CQs
analogous to those defined in [8, 7, 15, 18, 20]. Analogous definitions of [15, 18] are independent of Robinson’s CQ,
while analogues of [8, 7, 20] are strictly weaker than Robinson’s CQ.

Since several algorithms are expected to generate AKKT sequences (this is the case, for instance, of the augmented
Lagrangian algorithms of [4] and [9]), a relevant corollary of our analysis is that all CQs introduced in this paper can be
used for proving global convergence of these algorithms to a KKT point.

This paper is organized as follows. In Section 2, we briefly introduce constant rank CQs for nonlinear programming.
In Section 3, we revisit constraint qualifications for second-order cone programming. Section 4 is devoted to the AKKT
approach, while in Section 5 we introduce and explain our new CQs for second-order cones. In Section 6 we extend these
ideas to semidefinite programming. Finally, our conclusions are presented in Section 7.

Notation: For a continuously differentiable function g : Rn → Rm, we denote Jg(x) the m× n Jacobian matrix of
g at x, for which the j-th row is given by the transposed gradient ∇g j(x)T of the j-th component function g j : Rn →
R, j = 1, . . . ,m. Any finite-dimensional space Rm is equipped with its standard Euclidean inner product 〈x,y〉 := xT y =
∑

m
j=1 x jy j . Then, given a closed convex cone K ⊆Rm, we denote its polar by K◦ := {v∈Rm | 〈v,y〉 ≤ 0,∀y∈K}. Finally,

we adopt the following standard conventions on the empty set /0: the sum over an empty index set is null (i.e., ∑ /0 = 0)
and /0 is linearly independent (considered as the basis of the trivial linear space {0}).

2 Constant rank-type CQ conditions in nonlinear programming
Consider the following nonlinear programming problem (NLP):

Minimize f (x),

s.t. hi(x) = 0, i = 1, . . . , p, (1)

g j(x)≤ 0, j = 1, . . . ,q,

where f ,hi,g j : Rn→ R are continuously differentiable functions. We denote by A(x∗) := { j ∈ {1, . . . ,q} | g j(x∗) = 0},
the set of indices of active inequality constraints at a feasible point x∗.

It is well known that at a local minimizer x∗, it holds that −∇ f (x∗) ∈T (x∗)◦, where T (x∗) denotes the (Bouligand)
tangent cone to the feasible set at x∗ (see, e.g., [19, Theorem 12.8]). However, since the tangent cone is a geometric
object, this necessary optimality condition is not always easy to manipulate. For this reason, one considers the linearized
cone, which is defined as follows:

L (x∗) :=
{

d ∈ Rn | ∇hi(x∗)T d = 0, i = 1, . . . , p; ∇g j(x∗)T d ≤ 0, j ∈ A(x∗)
}
.

Its polar may be computed via Farkas’ Lemma, obtaining:

L (x∗)◦ =

{
v ∈ Rn

∣∣∣∣∣ v = p

∑
i=1

λi∇hi(x∗)+ ∑
j∈A(x∗)

µ j∇g j(x∗),µ j ≥ 0, j ∈ A(x∗)

}
.

Hence, when T (x∗)◦ = L (x∗)◦, this geometric optimality condition takes the form of the usual, much more tractable,
Karush-Kuhn-Tucker conditions. Vectors (λi,µ j) above are called Lagrange multipliers associated with x∗, and the set
of all these vectors is denoted by Λ(x∗) in this manuscript.

A constraint qualification (CQ) is a condition that ensures the equality T (x∗)◦ = L (x∗)◦. One of the most used CQ
in the NLP literature is the well-known Linear Independence Constraint Qualification (LICQ), which states the linear
independence of the set of gradients {∇hi(x∗)}p

i=1∪{∇g j(x∗)} j∈A(x∗). LICQ ensures not only the existence, but also the
uniqueness of the Lagrange multiplier (see, e.g., [19, Section 12.3]). Several weaker CQs have been defined for NLP.
In this paper, we are interested in constant rank-type ones as first introduced by Janin in [15]. Recall that in the NLP
setting, we say that the Constant Rank Constraint Qualification (CRCQ) holds at a feasible point x∗ if there exists a
neighborhood V of x∗, such that for every subsets I ⊆ {1, . . . , p} and J ⊆ A(x∗), the rank of {∇hi(x),∇g j(x); i ∈ I, j ∈ J}
remains constant for all x ∈V . CRCQ is clearly weaker than LICQ.

Note that requiring only constant rank of the full set of gradients {∇hi(x)}p
i=1∪{∇g j(x)} j∈A(x∗) (which is known as

the Weak Constant Rank (WCR) property) is not a CQ, as shown in [10]. The necessity of considering every subset of
this set of gradients may be seen from the definition of the linearized cone. Indeed, given d ∈L (x∗), the relevant index
set of inequality constraints gradients is given by J = Jd := { j ∈ A(x∗) | ∇g j(x∗)T d = 0}, which cannot be chosen in
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advance if one only considers the point x∗. However, this suggests that there is no need to consider subsets of indices
for the equality constraints, that is, it is enough to fix I = {1, . . . , p}. This condition, called Relaxed-CRCQ (RCRCQ),
has been shown to be a CQ in [17]. This condition reads as follows: RCRCQ holds at a feasible point x∗ if there exists
a neighborhood V of x∗, such that for every subset J ⊆ A(x∗), the rank of {∇hi(x),∇g j(x); i ∈ {1, . . . , p}, j ∈ J} remains
constant for all x ∈V .

These conditions can be seen as constant linear dependence conditions and thus it is natural to weaken these defini-
tions by considering only constant positive linear dependence, providing conditions CPLD [20] and its relaxed variant
RCPLD [8], both strictly weaker than Mangasarian-Formovitz CQ. This will be the most natural formulation for the CQs
we propose in this paper. We refer the reader to [8].

It turns out that the idea behind the construction of RCRCQ can be also extended to inequality constraints, providing
an even weaker CQ. One seeks at characterizing a single index set J which is relevant of having the constant rank
property. This set consists of the indices of gradients defining the subspace component of L (x∗)◦, which is given by its
lineality space. More precisely, the lineality space of L (x∗)◦, defined as the largest linear space contained in L (x∗)◦,
is in this case given by L (x∗)◦ ∩−L (x∗)◦. So, a gradient ∇g j(x∗) belongs to L (x∗)◦ ∩−L (x∗)◦ if, and only if,
−∇g j(x∗) ∈L (x∗)◦. Thus, for J = J−(x∗) := { j ∈ A(x∗) | −∇g j(x∗) ∈L (x∗)◦}, we say that the Constant Rank of the
Subspace Component (CRSC) CQ holds at a feasible point x∗ if there exists a neighborhood V of x∗, such that the rank
of {∇hi(x),∇g j(x); i ∈ {1, . . . , p}, j ∈ J−(x∗)} remains constant for all x ∈V . It was proved in [7] that CRSC is sufficient
for the existence of Lagrange multipliers at a local minimizer, and this is the weakest of the CQs we have discussed.

CQ conditions discussed above in the NLP context have multiple applications. For instance, RCRCQ was used to
compute the derivative of the value function in [18], as well as to prove the convergence of a second-order augmented
Lagrangian algorithm to second-order stationary points in [6]. RCPLD and CRSC were shown to be sufficient for proving
first-order global convergence of several algorithms while also implying the validity of an error bound property (cf. [7]).
Noteworthy, under CRSC, all inequality constraints in the set J−(x∗) behave locally as equality constraints, in the sense
that they are active at any feasible point in a neighborhood of x∗. Therefore, we strongly believe that the extension of
these notions to a conic framework may have a major impact in stability and algorithmic theory for conic programming.

3 Constraint qualifications conditions in second-order cone program-
ming
Let us consider the second-order cone programming (SOCP) problem as follows:

Minimize f (x),

s.t. hi(x) = 0, i = 1, . . . , p, (2)

g j(x) ∈ Km j , j = 1, . . . , `,

where the functions are continuously differentiable and the second-order cones are denoted by Km j := {(z0,z) ∈ R×
Rm j−1 | z0 ≥ ‖z‖} when m j > 1, and Km j := R+ (non-negative reals) otherwise.

We say that the Karush-Kuhn-Tucker (KKT) conditions hold for problem (2) at a feasible point x∗ if there exists
λ ∈ Rp, µ j ∈ Km j , j = 1, . . . , `, such that

∇xL(x∗,λ ,µ) = ∇ f (x∗)+ Jh(x
∗)T

λ −
`

∑
j=1

Jg j (x
∗)T

µ j = 0, (3)

〈µ j,g j(x∗)〉= 0, j = 1, . . . , `. (4)

Here, L(x,λ ,µ) := f (x)+〈λ ,h(x)〉−∑
`
j=1〈µ j,g j(x)〉 is the standard Lagrangian function for problem (2), and ∇xL(x,λ ,µ)

denotes the gradient of L at (x,λ ,µ) with respect to x. As usual, the set of all Lagrange multipliers (λ ,µ) associated with
the feasible point x∗, such that (3)–(4) are fulfilled, is denoted by Λ(x∗).

As in NLP, one needs to assume a suitable CQ in order to ensure the existence of Lagrange multipliers associated
with a local minimizer. In what follows, we recall the elements needed to define these CQs in the SOCP context.

The topological interior of Km j , denoted by int(Km j ), and the non-zero boundary, denoted by bd+(Km j ), are respec-
tively defined by

int(Km j ) := {(z0,z) ∈ R×Rm j−1 | z0 > ‖z‖},

bd+(Km j ) := {(z0,z) ∈ R×Rm j−1 | z0 = ‖z‖> 0}.
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Thus, given a feasible point x∗, we introduce the index sets:

Iint(x∗) := { j ∈ {1, . . . , `} | g j(x∗) ∈ int(Km j )},
IB(x∗) := { j ∈ {1, . . . , `} | g j(x∗) ∈ bd+(Km j )},
I0(x∗) := { j ∈ {1, . . . , `} | g j(x∗) = 0}.

Moreover, the complementarity condition (4) can be equivalently written as

µ j ◦g j(x∗) = 0, j = 1, . . . , `, (5)

where the operation ◦ is defined for any couple of vectors y := (y0, ȳ) and s := (s0, s̄), with the same dimension, as follows:

y◦ s :=
(
〈y,s〉

y0s̄+ s0ȳ

)
.

For more details about this operation, its algebraic properties and its relation with Jordan algebras, see [1, Section 4] and
references therein.

From (5), it is easy to check that complementarity condition is equivalently written in terms of the above-mentioned
index sets as follows:

µ j = 0 if j ∈ Iint(x∗), µ j = α jRm j g j(x∗), for some α j ≥ 0, if j ∈ IB(x∗), (6)

and no condition on µ j can be inferred when j ∈ I0(x∗). Here, Rm is an m×m diagonal matrix whose first entry is 1
and the remaining ones are −1. Consequently, KKT conditions at x∗ can be characterized as the existence of λ ∈ Rp,
µ j ∈ Km j , j ∈ I0(x∗), and α j ≥ 0, j ∈ IB(x∗), such that

∇ f (x∗)+ Jh(x
∗)T

λ − ∑
j∈I0(x∗)

Jg j (x
∗)T

µ j− ∑
j∈IB(x∗)

α j∇φ j(x∗) = 0, (7)

where
φ j(x) :=

1
2
([g j(x)]20−‖g j(x)‖2) for all j ∈ IB(x∗).

Indeed, it is straightforward to check that ∇φ j(x) = Jg j (x)
T Rm j g j(x) and multipliers µ j for all j 6∈ I0(x∗) are recovered

from (6).
The use of mappings φ j is a consequence of applying the reduction approach to problem (2). Actually, condition (7)

is simply KKT conditions at point x∗ for a locally equivalent version of problem (2) for which constraints g j(x) ∈ Km j

are replaced by φ j(x)≥ 0 when j ∈ IB(x∗), and are omitted when j ∈ Iint(x∗). For the sake of completeness, this reduced
equivalent problem is explicitly stated here below:

Minimize f (x),

s.t. hi(x) = 0, i = 1, . . . , p, (8)

g j(x) ∈ Km j , j ∈ I0(x∗),

φ j(x)≥ 0, j ∈ IB(x∗).

Despite its apparent simplicity in the SOCP setting, the reduction approach is a key tool in conic programming. It
permits obtaining first- and second-order optimality conditions, to simplify some well-known CQs, among other crucial
properties. See [13, Section 3.4.4] and [12, Section 4] for more details. Throughout this article we will use KKT condition
(7) and problem (8) to adapt CQ conditions from NLP to the SOCP setting (2).

One of the most used (and strong) conditions to guarantee the existence of a Lagrange multiplier at a local minimizer
x∗ is the nondegeneracy condition. Thanks to the reduction approach (cf. [13, Equation 4.172]), this condition can be
equivalently defined as follows:

Definition 3.1. Let x∗ be a feasible point of (2). Consider all the row vectors of the matrices Jh(x∗) and Jg j (x
∗), j ∈ I0(x∗)

together with the row vectors ∇φ j(x∗)T , j ∈ IB(x∗). We say that nondegeneracy holds at x∗ when these vectors are linearly
independent.

The nondegeneracy condition implies the existence and uniqueness of a Lagrange multiplier at a local minimizer x∗,
and the reciprocal is true provided that (x∗,λ ,µ) (with (λ ,µ) ∈ Λ(x∗)) is strictly complementary, that is, g j(x∗)+ µ j ∈
int(Km j ) for all j = 1, . . . , `; see [13, Proposition 4.75]. Thus, nondegeneracy is the analogue of LICQ from nonlinear
programming. Note that there are other definitions of nondegeneracy e.g. [1, Definition 18] and [12, Definition 16].
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However, all these definitions coincide in the case of SOCP problem (2). We address the reader to [12, Section 4] for
more details about nondegeneracy in the context of SOCP.

As LICQ in NLP, nondegeneracy condition is often considered too strong. For this reason, one typically assumes
a weaker condition, called Robinson’s CQ, which was originally defined in [22] for a general conic setting. In our
SOCP setting, we can use characterizations given in [13, Proposition 2.97, Corollary 2.98 and Lemma 2.99] to obtain the
following equivalent definition:

Definition 3.2. Let x∗ be a feasible point of (2). We say that Robinson’s CQ holds at x∗ if

Jh(x
∗)T

λ +
`

∑
j=1

Jg j (x
∗)T

µ j = 0 and λ ∈ Rm, µ j ∈ Km j , 〈µ j,g j(x∗)〉= 0, j = 1, . . . , `

⇒ λ = 0 and µ j = 0, j = 1, . . . , `.

(9)

As in NLP, when x∗ is assumed to be a local solution of (2), Robinson’s CQ (9) is equivalent to saying that the set of
Lagrange multipliers Λ(x∗) is nonempty and compact (cf. [13, Props. 3.9 and 3.17]). In this sense, condition (9) can be
seen as an extension of Mangasarian-Fromovitz CQ in NLP to the SOCP setting (2), written in a dual form.

Thanks to (6), condition (9) can be rewritten as follows:

Jh(x
∗)T

λ + ∑
j∈I0(x∗)

Jg j (x
∗)T

µ j + ∑
j∈IB(x∗)

α j∇φ j(x∗) = 0,

λ ∈ Rm,µ j ∈ Km j , j ∈ I0(x∗); α j ≥ 0, j ∈ IB(x∗)

⇒ λ = 0,µ j = 0, j ∈ I0(x∗); α j = 0, j ∈ IB(x∗).

(10)

As we will see in the forthcoming sections, condition (10) best fits our analysis.
Note that (10) can be interpreted as a conic linear independence of the (transposed) Jacobians and gradients involved in

its definition. Indeed, given some finite number of convex and closed cones C j and denoting by ∏ j C j the cartesian product
of these sets, we say that a correspondent set of matrices V j of appropriate dimensions is ∏ j C j-linearly independent if

∑
j

V js j = 0 and − s j ∈C◦j for all j ⇒ s j = 0 for all j.

Then, (10) coincides with the {0p}×∏ j∈I0(x∗) Km j ×R|IB(x∗)|
+ -linear independence of matrices: Jh(x∗)T , Jgi(x

∗)T with
j ∈ I0(x∗), and ∇φ j(x∗) with j ∈ IB(x∗). Here, 0p denotes the null vector in Rp. Moreover, when C j = R+ for all j in
the definition above (and consequently, each matrix V j is simply a column vector), ∏ j C j-linear independence coincides
with the well-known positive linear independence. Then, condition (10) reminds the characterization of Mangasarian-
Fromovitz CQ condition given by the positive linear independence of the gradients of active constraints (after replacing
each equality constraint hi(x) = 0 by two inequalities hi(x) ≥ 0 and hi(x) ≤ 0). It is also interesting to note that {0p}×
∏ j=1,...,` Km j -linear independence of matrices Jh(x∗)T and Jgi(x

∗)T with j = 1, . . . , `, is strictly stronger than Robinson’s
CQ (9). This again shows how useful is the reduction approach for our analysis. Given the analyzed above, when
Robinson’s CQ fails, we say that the corresponding matrices in (10) are conic linearly dependent.

4 The Approximate-KKT approach
For the nonlinear programming problem (1), the following Approximate-KKT (AKKT) necessary optimality condition [5]
is well known:

Theorem 4.1. Let x∗ be a local minimizer of (1). Then, there exist sequences {xk} ⊂ Rn, {λ k} ⊂ Rp, {µk} ⊂ Rq
+ such

that xk→ x∗ and

∇ f (xk)+
p

∑
i=1

λ
k
i ∇hi(xk)+ ∑

j∈A(x∗)
µ

k
j ∇g j(xk)→ 0. (11)

We define µk
j → 0 (or, equivalently, µk

j = 0) for j 6∈ A(x∗). Note that this does not require any constraint qualification
at all and the sequence of approximate Lagrange multipliers {(λ k,µk)}may be unbounded. If the sequence has a bounded
subsequence, one may take a convergent subsequence such that the KKT conditions hold. In the unbounded case, one
may define Mk := max{|λ k

i |, i = 1, . . . , p; µk
j , j ∈ A(x∗)} →+∞ and divide the expression in (11) by Mk. Thus, one may

take an appropriate subsequence such that

λ k

Mk → λ ∈ Rp and
µk

j

Mk → µ j ≥ 0, j ∈ A(x∗),
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obtaining the existence of scalars λi, i = 1, . . . , p; µ j ≥ 0, j ∈ A(x∗), not all equal to zero, satisfying

p

∑
i=1

λi∇hi(x∗)+ ∑
j∈A(x∗)

µ j∇g j(x∗) = 0.

That is, the gradients of equality constraints and active inequality constraints are positive linearly dependent. This pro-
vides a simple proof for the existence of Lagrange multipliers under the Mangasarian-Fromovitz CQ (MFCQ). A very
similar argument shows that the set of Lagrange multipliers at x∗ is bounded if, and only if, MFCQ holds.

In order to go beyond MFCQ in nonlinear programming, one relies on the well-known Carathéodory’s Lemma, as
stated in [17]:

Lemma 4.1. Let v1, . . . ,vp+q ∈ Rn be such that {vi}p
i=1 are linearly independent. Consider scalars βi, i = 1, . . . , p+

q, and denote y := ∑
p+q
i=1 βivi. Then, there exist J ⊆ {p + 1, . . . , p + q} and scalars β̂i, i ∈ {1, . . . , p} ∪ J, such that

{vi}i∈{1,...,p}∪J are linearly independent, βi > 0 implies β̂i > 0, for all i ∈ J, and y = ∑i∈{1,...,p}∪J β̂ivi.

Thus, in order to prove that CRCQ (and its weaker variants) is a CQ for the nonlinear programming problem (1), we
apply Carathéodory’s Lemma to (11). This yields

∇ f (xk)+ ∑
i∈Ik

λ̃
k
i ∇hi(xk)+ ∑

j∈Jk

µ̃
k
j ∇g j(xk)→ 0,

with Ik ⊆ {1, . . . , p}, Jk ⊆ A(x∗), µ̃k
j ≥ 0, j ∈ Jk, and such that the vectors of the set {∇hi(xk)}i∈Ik ∪{∇g j(xk)} j∈Jk are

linearly independent for all k. Here, by the infinite pigeonhole principle and passing to a subsequence if necessary, index
subsets Ik and Jk can be taken as fixed and not depending on k. Then, the AKKT approach described above is similarly
followed. It is worth to emphasize here that the application of Carathéodory’s Lemma preserves the sign of the candidate
to multipliers, that is, µ̃k

j has the same sign than µk
j . This is a crucial step which is not clearly extended to the conic case

(see [3]). Note that if {∇hi(xk)}p
i=1 is linearly independent for all k, we may take Ik = {1, . . . , p}, which will be relevant

in our analysis.
In the sequel, we will use the extension of the AKKT necessary optimality condition for second-order cone program-

ming (2), as presented in [4]:

Theorem 4.2. Let x∗ be a local minimizer of (2). Then, there exist sequences {xk} ⊂ Rn, {λ k} ⊂ Rp, {µk
j } ⊂ Km j , j ∈

I0(x∗), {αk
j } ⊂ R+, j ∈ IB(x∗) such that xk→ x∗ and

∇ f (xk)+ Jh(x
k)T

λ
k− ∑

j∈I0(x∗)
Jg j (x

k)T
µ

k
j − ∑

j∈IB(x∗)
α

k
j ∇φ j(xk)→ 0. (12)

5 A proposal of constraint qualifications for second-order cones
Following the previous discussion, we present a “naive” formulation of constant rank constraint qualifications for the
second-order cone programming problem (2).

Definition 5.1. Let x∗ be a feasible point of problem (2) and I ⊆ {1, . . . , p} be such that {∇hi(x∗)}i∈I is a basis of the
linear space generated by vectors {∇hi(x∗)}p

i=1. We say that the Relaxed Constant Positive Linear Dependence (RCPLD)
condition holds at x∗ when, for all J ⊆ IB(x∗), there exists a neighborhood V of x∗ such that:

• {∇hi(x)}p
i=1 has constant rank for all x in V ;

• if the system

∑
i∈I

λi∇hi(x∗)+ ∑
j∈I0(x∗)

Jg j (x
∗)T

µ j + ∑
j∈J

α j∇φ j(x∗) = 0,

λi ∈ R, i ∈ I; µ j ∈ Km j , j ∈ I0(x∗); α j ≥ 0, j ∈ J,

has a not all zero solution (λi)i∈I ,(µ j) j∈I0(x∗),(α j) j∈IB(x∗), then vectors {∇hi(x)}i∈I ∪{∇φ j(x)} j∈J are linearly
dependent for all x in V .

Note that Robinson’s CQ implies RCPLD since it states the conic linear independence of the corresponding sets (and
thus, for all its subsets) while RCPLD allows its conic linear dependence, as long as the linearly dependence is maintained
for a reduced subset in a neighborhood.

The definition above takes into account our inability to relax Robinson’s CQ for cones Km j with j ∈ I0(x∗), as the
linear dependence for x near x∗ is required only for equalities and for constraints at the boundary. Indeed, note that in
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the case when IB(x∗) = /0 and no equalities are considered (i.e., p = 0), RCPLD coincides with Robinson’s CQ (9). This
is an immediate consequence of the adopted convention that states that the empty set is always a linear independent set.
On the other hand, we are aware that Definition 5.1 is unnecessarily strong when m j = 1 for an index j ∈ I0(x∗). Indeed,
in such case, the associated inequality g j(x) ∈ Km j corresponds to an inequality constraint of the form g j(x) ≥ 0, which
is active at x∗. Hence, RCPLD definition can be slightly modified to take this situation into account as follows: define
A(x∗) := { j ∈ I0(x∗) | m j = 1}, and remove those indices from I0(x∗), that is, define Ĩ0(x∗) := I0(x∗)\A(x∗). Indices in
A(x∗) can thus be treated similarly to those in IB(x∗). So, by defining φ j(x) := g j(x) when j ∈ A(x∗), a slightly weaker
version of RCPLD can be obtained by replacing I0(x∗) by Ĩ0(x∗) and IB(x∗) by IB(x∗)∪A(x∗) in Definition 5.1. Since
this modification has no consequence in the proof of Theorem 5.1, we do not include it in its statement.

The point raised in the last paragraph explains why Definition 5.1 is considered a “naive” extension of a constant
rank-type condition. Before proving that RCPLD is a CQ for problem (2), we make further observations related to this
point.

Remark 5.1. a) When we choose J = /0 in Definition 5.1, we necessarily obtain that there is no non-zero solution (λi,µ j),
with i ∈ I and j ∈ I0(x∗), to the system:

∑
i∈I

λi∇hi(x∗)+ ∑
j∈I0(x∗)

Jg j (x
∗)T

µ j = 0 and λi ∈ R, i ∈ I; µ j ∈ Km j , j ∈ I0(x∗).

This is equivalent to saying that Robinson’s CQ holds at x∗ for the constrained set Γ0 := {x | hi(x) = 0, i ∈ I, g j(x) ∈
Km j , j ∈ I0(x∗)}. So, RCPLD ensures that Robinson’s CQ is fulfilled at x∗ for the active set Γ0. Actually, by using the
slight modification discussed above, we can exclude standard nonlinear constraints from I0(x∗), and conclude that it
only implies the weaker condition: Robinson’s CQ holds at x∗ for the constrained set Γ̃0 := {x | hi(x) = 0, i ∈ I, g j(x) ∈
Km j , j ∈ I0(x∗), m j > 1}.

b) Consider the case when problem (2) reduces to NLP (1), that is, Ĩ0(x∗) = /0 and IB(x∗) = /0. Then, RCPLD in
Definition 5.1 reduces to the respective definition for nonlinear programming [8]. In particular, by enlarging the sys-
tem to include α j ∈ R, j ∈ J, instead of only considering α j ≥ 0, j ∈ J, the definition reduces to an equivalent char-
acterization (see [8]) of RCRCQ: {∇hi(x)}p

i=1 has constant rank for x around x∗ and for all J ⊆ A(x∗), if the set
{∇hi(x∗)}i∈I ∪ {∇φ j(x∗)} j∈J is linearly dependent, then {∇hi(x)}i∈I ∪ {∇φ j(x)} j∈J must remain linearly dependent
for all x in a neighborhood of x∗ (here, the set I is fixed as in Definition 5.1). The latter also explains why RCPLD, given
in Definition 5.1, is considered a constant rank-type condition for problem (2).

c) Differently from the definition of nondegeneracy and Robinson’s CQ, the choice of the reduction function φ(·)
gives rise to different constant rank conditions. For instance, one could formulate a similar, but different, condition by
considering the alternative reduction function φ̃ j(x) := [g j(x)]0−‖g j(x)‖ for j ∈ IB(x∗). This is a well-known fact for
nonlinear programming, which establishes that when a constraint set satisfies CRCQ, it can be rewritten in such a way
that it fulfills Robinson’s CQ [16].

Theorem 5.1. Let x∗ be a feasible point of problem (2) satisfying the AKKT condition (12) and RCPLD. Then, the KKT
conditions hold at x∗. In particular, RCPLD is a constraint qualification.

Proof. AKKT condition (12) ensures the existence of sequences {xk} ⊂Rn, {λ k} ⊂Rp, {µk
j } ⊂Km j , j ∈ I0(x∗), {αk

j } ⊂
R+, j ∈ IB(x∗), such that xk→ x∗ and

∇ f (xk)+
p

∑
i=1

λ
k
i ∇hi(xk)− ∑

j∈I0(x∗)
Jg j (x

k)T
µ

k
j − ∑

j∈IB(x∗)
α

k
j ∇φ j(xk)→ 0.

By the constant rank assumption on the equality constraints, and the definition of I, we may rewrite ∑
p
i=1 λ k

i ∇hi(xk) =

∑i∈I λ̃ k
i ∇hi(xk) for new scalars λ̃ k

i ∈R, i∈ I, such that vectors {∇hi(xk)}i∈I are linearly independent. Applying Carathéodory’s
Lemma, for each k, we get Jk ⊆ IB(x∗) and new scalars λ̂ k

i ∈ R, i ∈ I, α̂k
j ≥ 0, j ∈ Jk, such that

∇ f (xk)+∑
i∈I

λ̂
k
i ∇hi(xk)− ∑

j∈I0(x∗)
Jg j (x

k)T
µ

k
j − ∑

j∈Jk

α̂
k
j ∇φ j(xk)→ 0, (13)

and vectors {∇hi(xk)}i∈I ∪{∇φ j(xk)} j∈Jk are linearly independent. By the infinite pigeonhole principle, without loss of
generality we can consider subsequences, which are renamed as the original ones, for which sets Jk are the same for all
k. This set is denoted by J.

Define Mk := max{|λ̂ k
i |, i ∈ I;‖µk

i ‖, i ∈ I0(x∗); α̂ j, j ∈ J}. If {Mk} is bounded, any accumulation point of {λ̂ k
i , i ∈

I; µk
i , i ∈ I0(x∗); α̂ j, j ∈ J} (after replacing by 0 the values for indices that are neither in I, nor in J) satisfies (7). Hence,
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x∗ is a KKT point of (2). Otherwise, we may take a subsequence such that Mk →+∞, and divide the expression in (13)
by Mk, considering convergent subsequences such that

−
λ̂ k

i
Mk → λi ∈ R, i ∈ I;

µk
j

Mk → µ j ∈ Km j , j ∈ I0(x∗);

α̂k
j

Mk → α j ≥ 0, j ∈ J, with (λi,µ j,α j) 6= 0,

and obtaining
∑
i∈I

λi∇hi(x∗)+ ∑
j∈I0(x∗)

Jg j (x
∗)T

µ j + ∑
j∈J

α j∇φ j(x∗) = 0.

Then, since vectors {∇hi(xk)}i∈I ∪{∇φ j(xk)} j∈J are linearly independent, this contradicts the definition of RCPLD.

Exact definition of RCPLD in nonlinear programming can be consulted in [8]. The definition of CRCQ [15], RCRCQ
[18], and CPLD [20] may be analogously extended. They are omitted. We only introduce the extension of CRSC [7] for
this SOCP setting, since its definition is more involving and differs from its nonlinear programming counterpart. For the
sake of completeness, the definition of CRSC considers sets Ĩ0(x∗) and A(x∗). To prove that CRSC is a CQ is enough to
follow the proof of Theorem 5.1, so it is omitted.

Definition 5.2. Let x∗ be a feasible point of (2) and J−(x∗)⊆ IB(x∗)∪A(x∗) be defined as

J−(x∗) :=

{
j0 ∈ IB(x∗)∪A(x∗)

∣∣∣−∇φ j0(x
∗) =

p

∑
i=1

λi∇hi(x∗)+ ∑
j∈IB(x∗)∪A(x∗)

α j∇φ j(x∗),

for some λi ∈ R,α j ≥ 0

}
.

Set J+(x∗) := IB(x∗)∪A(x∗)\J−(x∗). We also define I⊆{1, . . . , p} and J⊆ J−(x∗) such that {∇hi(x∗)}i∈I∪{∇φ j(x∗)} j∈J
is a basis of the linear space generated by {∇hi(x∗)}p

i=1 ∪ {∇φ j(x∗)} j∈J−(x∗). We say that the Constant Rank of the
Subspace Component (CRSC) condition holds at x∗ when there exists a neighborhood V of x∗ such that:

• {∇hi(x)}p
i=1∪{∇φ j(x)} j∈J−(x∗) has constant rank for all x in V ;

• the system

∑
i∈I

∇hi(x∗)λi + ∑
j∈Ĩ0(x∗)

Jg j (x
∗)µ j + ∑

j∈J∪J+(x∗)
∇φ j(x∗)α j = 0,

λi ∈ R, i ∈ I; µ j ∈ Km j , j ∈ Ĩ0(x∗); α j ∈ R, j ∈ J; α j ≥ 0, j ∈ J+(x∗),

has only the trivial solution.

Note that when Ĩ0(x∗) = /0, the second requirement in the definition of CRSC always holds [7].
As said above, both definitions, RCPLD and CRSC, are “naive” in the sense that they do not improve on Robinson’s

CQ regarding multi-dimensional cones at zero. That is, when all constraint indices belong to Ĩ0(x∗), both definitions
coincide with Robinson’s CQ (9). However, the example below shows that RCPLD and CRSC are strictly weaker than
Robinson’s CQ:

Example 5.1. Consider the constraint set defined by

g(x) := (g0(x),g1(x)) := (x,x) ∈ K2,

where x is one-dimensional. Clearly, x∗ = 1 is feasible and the single constraint is in the boundary, i.e. IB(x∗) is the
only nonempty index set. Reduced constraint is such that φ(x) := 1

2 (g0(x)2−g1(x)2) = 0 for all x. Then, it follows that
∇φ(x∗) = 0 and consequently, Robinson’s CQ fails. However, ∇φ(x) = 0 for all x, which implies that RCPLD holds.
CRSC also holds by noting that the reduced constraint belongs to the index set J−(x∗), whose gradient has constant
rank, and Ĩ0(x∗) = /0, which is sufficient for ensuring the second condition. Indeed, J = /0 is a basis for the linear space
generated by the constraint gradient in J−(x∗) and the result follows by the linear independence of the empty set.
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6 Extension to semidefinite programming
Consider the semidefinite programming (SDP) problem with multiple constraints:

Minimize f (x),

s.t. h(x) = 0, (14)

g j(x) ∈ Sm j
+ , j = 1, . . . , `,

where f : Rn→ R, h : Rn→ Rp, and g j : Rn→ Sm j are continuously differentiable functions, Sm j is the linear space of
m j×m j real symmetric matrices equipped with the inner product A ·B := trace(AB), where trace(AB) denotes the sum
of the elements of the diagonal of AB for all matrices A,B ∈ Sm j , and

Sm j
+ := {M ∈ Sm j | zT Mz≥ 0,∀z ∈ Rm j}

is the closed convex cone of all positive semidefinite elements of Sm j , for all j = 1, . . . , `. We denote by � j the partial
order relation induced by Sm j

+ , that is, A� j B if, and only if, B−A ∈ Sm j
+ . For the sake of notation, the index j is omitted

throughout the paper and this relation order is simply denoted by �. The order relations �, �, and ≺ are similarly
defined.

We end this subsection by recalling the Karush-Kuhn-Tucker conditions in the SDP framework. We say that KKT
conditions hold at a feasible point x∗ of problem (14) when there exist Lagrange multipliers λ ∈ Rp and µ j ∈ Sm j ,
j = 1, . . . , ` such that

∇ f (x∗)+ Jh(x
∗)T

λ −
`

∑
j=1

Jg j (x
∗)T

µ j, (15a)

g j(x∗) ·µ j = 0, j = 1, . . . , `, (15b)

with
Jg j (x

∗)T z := (∂1g j(x∗) · z, . . . ,∂ng j(x∗) · z)T , ∀z ∈ Sm j ,

where ∂ig j(x∗) is the partial derivative of g j with respect to the variable xi, at x∗, for each i = 1, . . . ,n. In fact, Jg j (x
∗)T is

the adjoint of the linear mapping Jg j (x
∗), defined by

Jg j (x
∗)d :=

n

∑
i=1

di∂ig j(x∗),

for all d = (d1, ...,dn)
T ∈ Rn, j = 1, . . . , `.

6.1 Revisiting constraint qualifications for multifold SDP
Constraint qualification conditions recalled in Section 3 for SOCP have been also well established for SDP problem
(14). In this section, we start by quickly recalling Robinson’s CQ, before proceeding with the study of nondegeneracy
condition, which needs more attention for our purposes.

As in the SOCP setting, Robinson’s CQ [22] can be equivalently characterized via the properties established in [13,
Proposition 2.97, Corollary 2.98 and Lemma 2.99] in its dual form:

Definition 6.1. We say that Robinson’s CQ holds at a feasible point x∗ of problem (14) when

Jh(x
∗)T

λ +
`

∑
j=1

Jg j (x
∗)T

µ j = 0,

g j(x∗) ·µ j = 0, ∀ j = 1, . . . , `,

µ j ∈ Sm j
+ , ∀ j = 1, . . . , `,

 ⇒ µ j = 0, ∀ j = 1, . . . , `. (16)

As in SOCP, Robinson’s CQ is considered as the natural extension of Mangasarian-Fromovitz CQ from NLP to the
SDP setting. Actually, when x∗ is assumed to be a local solution of (2), Robinson’s CQ (16) is equivalent to saying that
the set of Lagrange multipliers Λ(x∗) is nonempty and compact (cf. [13, Props. 3.9 and 3.17]).

Let us now recall nondegeneracy condition in the SDP context. The notion of nondegeneracy (called transversality
therein) was introduced by Shapiro and Fan in [25, Section 2] by means of tangent spaces in the context of eigenvalue
optimization. An equivalent form is proven in [13, Equation (4.172)] for reducible cones. This is adopted as a formal
definition in our multifold SDP setting:
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Definition 6.2. We say that a feasible point x∗ of problem (14) is nondegenerate when the following relation is satisfied

ImA (x∗)+{0}×
`

∏
j=1

lin(TSm j
+
(g j(x∗))) = Rp×

`

∏
j=1

Sm j , (17)

where

A (x∗) :=
(

Jh(x∗)
Jg j (x

∗); j = 1, ..., `

)
is a linear mapping from Rn to Rp×∏

`
j=1Sm j .

As it happens in SOCP, the nondegeneracy condition is considered to be a natural analogue of LICQ from NLP to
SDP. Actually, nondegeneracy condition (17) implies the existence and uniqueness of a Lagrange multiplier at a local
minimizer x∗, and the reciprocal is true provided that (x∗,λ ,µ) (with (λ ,µ) ∈ Λ(x∗)) is strictly complementary, that is,
g j(x∗)+ µ j � 0 for all j = 1, . . . , `; see [13, Proposition 4.75]. However, this analogy only makes sense when matrix
blocks g j(x∗) are chosen in a “minimal” way, in the sense of avoiding zeros in the off diagonal entries. In particular, an
NLP problem with ` inequality constraints should be modeled as an instance of (14) with m1 = . . .= m` = 1. Only in that
case, nondegeneracy coincides LICQ. To stress the point above, we recall here below some results from [11, Section 5].

Consider the NLP problem of minimizing f (x) under two constraints: g1(x) > 0 and g2(x) > 0, where f ,g1, and
g2 are smooth real-valued functions. Let x∗ be a local mimimun for which g1(x∗) = g2(x∗) = 0 and LICQ holds (i.e.,
vectors ∇g1(x∗) and ∇g2(x∗) are linearly independent). Denote by µ̄1 and µ̄2 the unique associated Lagrange multipliers,
and assume that strict complementarity holds: µ̄i > 0 for i = 1,2. If this NLP problem is written as the following SDP
problem

Minimize f (x),

s.t.
[

g1(x) 0
0 g2(x)

]
∈ S2

+, (18)

then nondegeneracy condition (17) never holds. Indeed, the Lagrange multiplier associated with x∗ for the reformulated
problem (18) is never unique. It is enough to note that the matrix

µ̄ :=
[

µ̄1 0
0 µ̄2

]
is an associated Lagrange multiplier as well as

µ̄ + t
(

0 1
1 0

)
,

for any t ∈ R such that t2 ≤ µ̄1µ̄2. Of course, this apparent inconsistency occurs not only for diagonal matrices but also
for any SDP problem with a diagonal structure (see e.g. [11, Lemma 5.1]), and it is due to an inappropriate modeling
decision regarding the sparse structure of the studied SDP problem.

On the other hand, this phenomenon does not occur with Robinson’s CQ, which is always preserved independently
of the block structure of the SDP constraint set. This may be one of the reasons why multifold SDP is not often taken
into consideration in the literature, along with the fact that interior-point methods are knowingly capable of exploiting
block-diagonal structure (see Gondzio’s review [14] and references therein for details). It is not expected, though, that
every constraint qualification will be preserved between multifold and block-diagonal representations. In particular, the
constraint qualifications we define in the next section are defined by means of exploiting the multifold structure. In this
context, they are strictly weaker than Robinson’s CQ, while if one considers a single block-diagonal representation our
condition would resume to Robinson’s CQ. Furthermore, since our analysis is related to AKKT sequences, which describe
the output of many practical algorithms, our results provide a stronger convergence theory for them when applied to SDP
problems under multifold representation.

For more details about the nondegeneracy condition in the semidefinite programming context, see e.g. [11, 24]. In
particular, Nondegeneracy condition for multifold SDP given in Definition 6.2 and the discussion above are inspired from
[11, Section 5].

In the next section we propose a naive RCPLD condition similar to Definition 5.1 for multifold SDP, as in (14). We
note that CPLD has already been used in the context of SDP problems in [26], however, they consider the application
of an augmented Lagrangian method for a mixed problem with SDP constraints and NLP constraints, where the NLP
constraints are not penalized and are carried out to the subproblems. Hence, the usual CPLD is assumed for the NLP
constrained subproblems, in the context of feasibility results, while Robinson’s CQ is assumed for the full problem in the
context of optimality results. In particular, no CPLD-type CQ is introduced for the full problem.
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6.2 A constant rank condition for SDP
Denote the smallest eigenvalue of a matrix A by σmin(A) and its associated unitary eigenvectors by νmin(A) and−νmin(A).
It is known that σmin is continuously differentiable at A when σmin(A) is simple, i.e., when it has algebraic multiplicity
equal to one, and that Jσmin(A) = νmin(A)νmin(A)T in this case (see, e.g., [25]). So, given a local minimizer x∗, the
composition σmin ◦g j is a reduction mapping for the block j when σmin(g j(x∗)) is simple, playing a similar role to φ j(x)
for problem (8). Also, in this scenario,

∇(σmin(g j(x)) = Jg j (x)
T Jσmin(g j(x)) (19)

when x is close enough to x∗. This motivates us to define an analogue of problem (8) for SDP as follows:

Minimize f (x),

s.t. h(x) = 0, (20)

g j(x) ∈ Sm j
+ , j ∈ IN(x∗),

σmin(g j(x))≥ 0, j ∈ IR(x∗),

where
IR(x∗) := { j ∈ {1, . . . , `} | 0 = σmin(g j(x∗)) is simple}

and
IN(x∗) := { j ∈ {1, . . . , `} | 0 = σmin(g j(x∗)) is not simple}.

Note that (20) is locally equivalent to (14) and that we have removed for simplicity all the constraints such that g j(x∗)� 0,
i.e., the “inactive” ones, in the reformulated problem. However, in problem (20), we have not applied the reduction
approach to blocks j ∈ IN(x∗). Roughly speaking, our approach consists of defining a constraint qualification that relaxes
Robinson’s CQ to a constant rank-type condition, but only at the constraints indexed by IR(x∗), which are the ones that
are well-behaved enough to be fully replaceable by a single real-valued constraint. As in the SOCP case, our strategy for
proving that this is indeed a constraint qualification is based on sequential optimality conditions.

In [9], the AKKT condition was extended for SDP. Next, we present an adapted version of it for problems with mixed
NLP and SDP constraints, like (20):

Theorem 6.1. Let x∗ be a local minimizer of (20). Then, there exist AKKT sequences {xk}⊂Rn, {λ k}⊂Rp, {αk
j }⊂R+,

and {µk
j } ⊂ Sm j

+ such that xk→ x∗ and

∇ f (xk)+ Jh(x
k)T

λ
k− ∑

j∈IN(x∗)
Jg j (x

k)T
µ

k
j − ∑

j∈IR(x∗)
α

k
j ∇σmin(g j(xk))→ 0, (21)

σi(g j(x∗))> 0⇒ σi(µ
k
j )→ 0, i = 1, . . . ,m j, ∀ j ∈ IN(x∗), (22)

where σi(µ
k
j ) and σi(g j(x∗)) denote corresponding eigenvalues of µk

j and g j(x∗), respectively, regarding ordered or-

thonormal eigenbasis {νi(µ
k
j )}

m j
i=1 and {νi(g j(x∗))}

m j
i=1 such that νi(µ

k
j ) → νi(g j(x∗)) for all i = 1, . . . ,m j and all

j ∈ IN(x∗).

With this result at hand, we proceed in a similar manner to Definition 5.1 in order to extend the Relaxed Constant
Positive Linear Dependence (RCPLD) condition to SDP via problem (20).

Definition 6.3. Let x∗ be feasible for problem (14) and let I ⊆ {1, . . . , p} be such that {∇hi(x∗)}i∈I is a basis for the
space spanned by {∇hi(x∗)}p

i=1. We say that Relaxed Constant Positive Linear Dependence holds at x∗ when, for every
J ⊆ IR(x∗), there exists a neighborhood V of x∗ such that:

• {∇hi(x)}p
i=1 has constant rank for all x ∈V ;

• If the system
Jh(x

∗)T
λ + ∑

j∈IN(x∗)
Jg j (x

∗)T
µ j + ∑

j∈J
α j∇σmin(g j(x∗)) = 0,

λ ∈ Rp, µ j � 0, ∀ j ∈ IN(x∗), α j > 0, ∀ j ∈ J

has a nontrivial solution, then {∇hi(x)}i∈I ∪{∇σmin(g j(x))} j∈J is linearly dependent for every x ∈V .

Next, we show that RCPLD is a constraint qualification using AKKT sequences (Theorem 6.1).

Theorem 6.2. Let x∗ be a feasible point of problem (14) satisfying the AKKT condition (21) and RCPLD stated in
Definition 6.3. Then, the KKT conditions (15) hold at x∗. In particular, RCPLD is a constraint qualification.
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Proof. Let {xk} → x∗, {λ k} ⊂ Rp, {αk
j } ⊂ R+, and {µk

j } ⊂ Sm j
+ be sequences such that (21) and (22) hold. By the

constant rank assumption and the definition of I, the set {∇hi(xk)}i∈I is a basis for the space spanned by {∇hi(xk)}p
i=1

when k is large enough. Hence, for all such k, there are new scalars λ̃ k ∈ R|I| such that

p

∑
i=1

λ
k
i ∇hi(xk) = ∑

i∈I
λ̃

k
i ∇hi(xk),

for all k. Set λ̃ k
i = 0 for all i 6∈ I. So, Jh(xk)T λ k = Jh(xk)T λ̃ k for all k.

Also, thanks to Carathéodory’s Lemma (Lemma 4.1) in (21), for every fixed k there is a nonempty subset Jk ⊂ IR(x∗)
such that {∇hi(xk)}i∈I

⋃
{∇σmin(g j(xk))} j∈Jk is linearly independent and, consequently, (21) can be rewritten as follows

∇ f (xk)+ Jh(x
k)T

λ̃
k− ∑

j∈IN(x∗)
Jg j (x

k)T
µ

k
j − ∑

j∈Jk

α̃
k
j ∇σmin(g j(xk))→ 0, (23)

for some α̃k
j > 0, where j ∈ Jk. Note that in this process the scalars λ̃ k

i , i ∈ I, also changes, but we abuse the notation

by still denoting them by λ̃ k
i . Now, by the infinite pigeonhole principle, we can assume, without loss of generality, that

Jk = J, for all k ∈ N. That is, we can take a subsequence if necessary such that Jk does not vary with k.
Now, we claim that the sequences {λ̃ k}, {µk

j }, j ∈ IN(x∗), and {α̃k
j }, j ∈ J are bounded. Indeed, set

Mk := max{α̃k
j , j ∈ J;‖µk

j ‖, j ∈ IN(x∗);‖λ̃ k‖}

and suppose that {Mk} is unbounded. This implies, by passing to a subsequence if necessary, that

−
λ̃ k

i
Mk → λi ∈ R, i ∈ I;

µk
j

Mk → µ j ∈ Km j , j ∈ IN(x∗);

α̃k
j

Mk → α j ≥ 0, j ∈ J, with (λi,µ j,α j) 6= 0.

Then, by dividing (21) by Mk and passing to the limit, we contradict RCPLD.
Finally, let µ̄ j ∈ Sm j

+ ( j ∈ IN(x∗)), ᾱ j > 0 ( j ∈ IR(x∗)), and λ̄ , be limit points of the sequences {µk
j } ( j ∈ IN(x∗)),

{α̃k
j } ( j ∈ IR(x∗)), and {λ̃ k}, respectively. Note that these limit points are Lagrange multipliers associated with x∗.

Indeed, by definition of IR(x∗), we always have σmin(g j(x∗))ᾱ j = 0, for all j ∈ IR(x∗). So, for each j ∈ IR(x∗) the matrix
µ̄ j := ᾱ jνmin(g j(x∗))νmin(g j(x∗))T is positive semidefinite and satisfies that Jg j (x

∗)T µ̄ j = ᾱk
j ∇σmin(g j(xk)) (cf. (19)).

Additionally, set µ̄ j := 0 when j is such that g j(x∗)� 0. Then, it follows from (21) that

∇ f (x∗)+ Jh(x
∗)T

λ̄ −
`

∑
j=1

Jg j (x
∗)T

µ̄ j = 0,

which together with (22) implies that g j(x∗) · µ̄ j = 0 for every j. The desired result follows.

The CRSC condition can also be extended in a very similar manner. That is, we treat the conic constraints that “look
like equality constraints” near the feasible point x∗, as equality constraints, which means it is not necessary to consider
the rank-type structure of every subset of their gradients, but only of one fixed set. To formalize our analyses, we define
the set

J−(x∗) :=

{
j0 ∈ IR(x∗)

∣∣∣−∇σmin(g j0(x
∗)) =

p

∑
i=1

λi∇hi(x∗)+ ∑
j∈IR(x∗)

α j∇σmin(g j(x∗)),

for some λi ∈ R,α j ≥ 0

}
,

(24)

and the set J+(x∗) := IR(x∗)\ J−(x∗). Now, the Constant Rank of the Subspace Component (CRSC) constraint qualifica-
tion for SDP is defined as follows:

Definition 6.4. Let x∗ be a feasible point of (2) and J−(x∗) ⊆ IR(x∗) be defined as in (24). We also take I ⊆ {1, . . . , p}
and J ⊆ J−(x∗) such that {∇hi(x∗)}i∈I ∪{∇σmin(g j(x∗))} j∈J is a basis of the space spanned by the set {∇hi(x∗)}p

i=1 ∪
{∇σmin(g j(x∗))} j∈J−(x∗). We say that Constant Rank of the Subspace Component (CRSC) condition holds at x∗ when
there exists a neighborhood V of x∗ such that:

• {∇hi(x)}p
i=1∪{∇σmin(g j(x))} j∈J−(x∗) has constant rank for all x in V ;
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• the system

∑
i∈I

λi∇hi(x∗)+ ∑
j∈IN(x∗)

Jg j (x
∗)T

µ j + ∑
j∈J∪J+(x∗)

α j∇σmin(g j(x∗)) = 0,

λi ∈ R, i ∈ I; µ j ∈ Sm j
+ , j ∈ IN(x∗); α j ∈ R, j ∈ J; α j ≥ 0, j ∈ J+(x∗),

has only the trivial solution.

It is possible to prove that CRSC is indeed a constraint qualification, but since the proof follows from the same
arguments provided in the proof of Theorem 6.2, it is omitted. The next counterexample, analogous to Example 5.1,
shows that CRSC and RCPLD are strictly weaker than Robinson’s CQ.

Example 6.1. Consider the following pair of constraints:

g1(x) :=
1
2

[
x+1 x−1
x−1 x+1

]
∈ S2

+, g2(x) :=
1
2

[
1− x −x−1
−x−1 1− x

]
∈ S2

+

and the point x∗ = 0, which is the unique feasible point. The eigenvalues of g1(x) are σmin(g1(x)) = x and σmax(g1(x)) =
1, with corresponding eigenvectors νmin(g1(x)) = (1,1)T and νmax(g1(x)) = (1,−1)T , respectively, for all x close to x∗.
With the same eigenvectors, the eigenvalues of g2(x) are σmin(g2(x)) =−x and σmax(g2(x)) = 1, when x is close to x∗.

Also, note that σmin(g1(x∗)) and σmin(g2(x∗)) are both simple, which means the reformulation of the problem as
in (20) is simply an NLP problem. Moreover, we have that ∇σmin(g1(x)) = 1, ∇σmin(g2(x)) =−1, for all x close enough
to x∗ = 0. Then, RCPLD and CRSC (with J−(x∗) = {1,2} and, consequently, J+(x∗) = /0 and J equals either {1} or {2})
hold. However, Robinson’s CQ does not hold. Thus, RCPLD and CRSC are strictly implied by Robinson’s CQ.

7 Conclusion
We have presented naive definitions of constant rank-type CQs for second-order cone programming and semidefinite pro-
gramming. The definition is naive in the sense that no improvement is made with respect to irreducible constraints, where
our definitions resume to Robinson’s CQ. However, in general, our definitions are strictly weaker than Robinson’s CQ.
In order to present a definition that takes into account the true conic constraints, we expect that a much more involving
implicit function approach or Approximate-KKT approach would be needed, which is a subject of current research. Note
that, since augmented Lagrangian algorithms described in [4] and [9] generate an AKKT sequence for SOCP (2) and SDP
(14) problems, respectively, CQs introduced in these notes are sufficient for showing global convergence to a KKT point
without assuming Robinson’s CQ.
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